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POSITIVE SOLUTIONS OF

NONLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS

WITH DIRICHLET BOUNDARY CONDITIONS

QINGKAI KONG† AND MIN WANG‡

Abstract. In this paper, we study the existence and multiplicity of positive
solutions of a class of nonlinear fractional boundary value problems with
Dirichlet boundary conditions. By applying the fixed point theory on cones
we establish a series of criteria for the existence of one, two, any arbitrary
finite number, and an infinite number of positive solutions. A criterion for
the nonexistence of positive solutions is also derived. Several examples are
given for demonstration.

1. Introduction

In this paper, we study the boundary value problem (BVP) consisting of the
fractional differential equation

−Dα
0+u = w(t)f(u), 0 < t < 1, (1.1)

and the Dirichlet boundary condition (BC)

u(0) = 0, u(1) = 0, (1.2)

where 1 < α < 2, w ∈ L[0, 1] is bounded with w(t) ≥ 0 on [0, 1] and w(t) > 0
on [1/4, 3/4], f ∈ C(R+,R+) with R+ = [0,∞), and Dα

0+ is the αth Riemann-
Liouville fractional derivative of h : [0, 1] → R defined as

Dα
0+h(t) =

1

Γ(2 − α)

d2

dt2

∫ t

0

(t− s)1−αh(s)ds,

whenever the right-hand side is defined.
Fractional differential equations have attracted extensive attention as they

can be applied in various fields of science and engineering. Many phenomena in
viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc.,
can be modeled as fractional differential equations. We refer the reader to
[10, 19] and references therein for the detail.

Due to the needs in applications, people have special interests in the existence
of positive solutions of BVPs. In the study on integer order nonlinear BVPs,
the fixed point theory on cones is a powerful tool in dealing with the existence of
positive solutions. The main idea is to construct a cone in a Banach space and a
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completely continuous operator defined on this cone based on the corresponding
Green’s function and then find fixed points of the operator. Many results have
been obtained by this approach, see, for example, [5, 7, 8, 11, 14, 15, 16, 17, 18,
20, 21, 22]. This idea has also been used to the study of fractional BVPs, see
[1, 2, 3, 6, 12, 13, 23, 25] and references therein for recent development.

In particular, Bai and Lü [3] proved that function G : [0, 1] × [0, 1] → R+

defined by

G(t, s) =















[t(1 − s)]α−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

(1.3)

is the Green’s function for the BVP consisting of the fractional differential
equation

Dα
0+u = 0

and BC (1.2). Based on it, they studied the BVP consisting of

−Dα
0+u = g(t, u), 0 < t < 1, (1.4)

and BC (1.2) and obtained results on the existence of one or three positive
solutions using the Krasnosel’skii fixed point theorem and the Leggett-Williams
fixed point theorem. By further revealing the properties of the Green’s function
G(t, s), Jiang and Yuan [12] obtained different conditions from those in [3] for
BVP (1.4), (1.2) to have one positive solution and derived conditions for it to
have two positive solutions.

To the best knowledge of the authors, there are no results yet on the existence
of an arbitrary number of positive solutions of BVP (1.4), (1.2). This is due to
the fact that although the Green’s function G(t, s) is positive in the interior of
its domain {(t, s) : 0 ≤ t, s ≤ 1}, it becomes zero on the boundary, and does
not satisfy the following condition

γΦ(s) ≤ G(t, s) ≤ Φ(s), t ∈ [a, b] ⊂ [0, 1], s ∈ [0, 1], (1.5)

with a positive Φ and γ ∈ (0, 1). The lack of (1.5) prevents us from constructing
a needed cone for the natural application of the fixed point theory as with
positive Green’s functions.

In this paper, by carefully manipulating the Green’s function G(t, s), we
obtain a weaker condition similar to (1.5) so that we are able to apply the
fixed point theory on cones to BVP (1.1), (1.2), where the functions w(t) and
f(x) satisfy certain conditions. A series of new criteria for BVP (1.1), (1.2) to
have one, two, an arbitrary number, and even an infinite number of positive
solutions are obtained. Our results reveal the fact that under our conditions,
the existence of one or more positive solutions is determined by the behavior
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of f on certain intervals. Moreover, a theorem on the nonexistence of positive
solutions is also derived.

This paper is organized as follows: After this introduction, our main results
are stated in Section 2. Several examples are given in Section 3. All the proofs
of the main results are given in the last section.

2. Main results

The following assumptions are needed in the presentations of our main results.

(H1) f(x) > 0 on R+ and there exists a function B : (0, 1) → (0,∞) such
that for any r > 0 and k ∈ (0, 1)

maxx∈[0,r] f(x)

minx∈[kr,r] f(x)
≤ B(k).

(H2) there exists k∗ ∈ (0, 1) such that

ψ(k∗) := k∗(1 +B(k∗)M) ≤ γ; (2.1)

where M = max{M1,M2} with

M1 := max
s∈[1/4,1/2]

G(s− 1/4, s− 1/4)w(s− 1/4)

G(s, s)w(s)
and

M2 := max
s∈[1/2,3/4]

G(s+ 1/4, s+ 1/4)w(s+ 1/4)

G(s, s)w(s)
,

here G is defined by (1.3); and γ = mins∈[1/4,3/4] γ(s) with

γ(s) =















[3
4
(1 − s)]α−1 − (3

4
− s)α−1

[s(1 − s)]α−1
, 0 < s ≤ s1,

1

(4s)α−1
, s1 ≤ s < 1,

(2.2)

here s1 is the unique solution of the equation

[
3

4
(1 − s)]α−1 − (

3

4
− s)α−1 =

1

4α−1
(1 − s)α−1.

From the proof of [3, Lemma 2.4] we know that 1/4 < s1 < 3/4.

Remark 2.1. The Assumptions (H1) and (H2) are satisfied by a variety of
functions of f and w.

(i) We claim that Assumption (H1) is satisfied by the following functions

f1(x) = bxθ, b > 0, θ > 0,

f2(x) = b1x
θ1 + b2x

θ2 , b1, b2 > 0, 0 < θ1 < 1 < θ2, and

f3(x) = bx(sin(x) + µ), b > 0, µ > 1.
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In fact, for any r > 0 and k ∈ (0, 1), since

maxx∈[0,r] f1(x)

minx∈[kr,r] f1(x)
=

brθ

b(kr)θ
= k−θ,

f1 satisfies (H1) with B(k) = k−θ; since

maxx∈[0,r] f2(x)

minx∈[kr,r] f2(x)
=

rθ2(b1r
θ1−θ2 + b2)

(kr)θ2(b1(kr)θ1−θ2 + b2)
< k−θ2 ,

f2 satisfies (H1) with B(k) = k−θ2 ; and since

maxx∈[0,r] f3(x)

minx∈[kr,r] f3(x)
≤ (µ+ 1)br

(µ− 1)bkr
=

µ+ 1

(µ− 1)k
,

f3 satisfies (H1) with B(k) = (µ+ 1)(µ− 1)−1k−1.
(ii) It is easy to see that for any function f satisfying Assumption (H1), As-

sumption (H2) holds when the function w is relatively small on [0, 1/4]∪
[3/4, 1] compared with its values on [1/4, 3/4]. In this case, the number
M in (H2) can be sufficiently small and hence inequality (2.1) has a
solution k∗ ∈ (0, 1).

However, the choice of the cut-off points 1/4 and 3/4 in the definitions
of M1 and M2 is only for convenience in computations. Actually, all
results in this paper can be extended to the case when the function w(t)
is sufficiently small near the endpoints 0 and 1.

(iii) For some functions f satisfying (H1), (H2) holds for any w ∈ C([0, 1],R+).
For example, consider f1(x) = bxθ with θ ∈ (0, 1). Since B(k) = k−θ,
ψ(k) = k + k1−θM → 0 as k → 0. Hence there exists k∗ ∈ (0, 1) such
that (2.1) holds.

In the following, we assume that the Assumptions (H1) and (H2) hold. Let

L = γ

∫ 3/4

1/4

G(s, s)w(s)ds, (2.3)

U = (1 +B(k∗)M)

∫ 3/4

1/4

G(s, s)w(s)ds. (2.4)

First, we state our basic result on the existence of a positive solution.

Theorem 2.1. Assume there exist r∗, r∗ > 0 with [k∗r∗, r∗]∩ [k∗r∗, r∗] = ∅, such
that

f(x) ≤ U−1r∗ on [k∗r∗, r∗], (2.5)

and

f(x) ≥ L−1r∗ on [k∗r∗, r∗]. (2.6)
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Then BVP (1.1), (1.2) has at least one positive solution u with min{r∗, r∗} ≤
‖u‖ ≤ max{r∗, r∗}.

In the sequel, we will use the following notation:

f0 = lim inf
x→0

f(x)/x, f∞ = lim inf
x→∞

f(x)/x;

f 0 = lim sup
x→0

f(x)/x, f∞ = lim sup
x→∞

f(x)/x.

The next three theorems are derived from Theorem 2.1 using f0, f∞, f
0, and

f∞.

Theorem 2.2. BVP (1.1), (1.2) has at least one positive solution if either

(a) f 0 < U−1 and f∞ > (k∗L)−1; or
(b) f0 > (k∗L)−1 and f∞ < U−1.

Theorem 2.3. Assume there exists r∗ > 0 such that (2.5) holds.

(a) If f0 > (k∗L)−1, then BVP (1.1), (1.2) has at least one positive solution
u with ‖u‖ ≤ r∗;

(b) if f∞ > (k∗L)−1, then BVP (1.1), (1.2) has at least one positive solution
u with ‖u‖ ≥ r∗.

Theorem 2.4. Assume there exists r∗ > 0 such that (2.6) holds.

(a) If f 0 < U−1, then BVP (1.1), (1.2) has at least one positive solution u
with ‖u‖ ≤ r∗;

(b) if f∞ < U−1, then BVP (1.1), (1.2) has at least one positive solution u
with ‖u‖ ≥ r∗.

Combining Theorems 2.3 and 2.4 we obtain results on the existence of at least
two positive solutions.

Theorem 2.5. Assume either

(a) f0 > (k∗L)−1 and f∞ > (k∗L)−1, and there exists r > 0 such that

f(x) < U−1r on [k∗r, r]; or (2.7)

(b) f 0 < U−1 and f∞ < U−1, and there exists r > 0 such that

f(x) > L−1r on [k∗r, r]. (2.8)

Then BVP (1.1), (1.2) has at least two positive solutions u1 and u2 with ‖u1‖ <
r < ‖u2‖.

Note that in Theorem 2.5, the inequalities in (2.7) and (2.8) are strict and
hence are different from those in (2.5) and (2.6) in Theorem 2.1. This is to guar-
antee that the two solutions u1 and u2 are different. By applying Theorem 2.1
repeatedly, we can generalize the conclusion to obtain criteria for the existence
of multiple positive solutions.
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Theorem 2.6. Let {ri}N
i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · < rN and

[k∗ri, ri], i = 1, . . . , N , are mutually disjoint. Assume either

(a) f satisfies (2.7) with r = ri when i is odd, and satisfies (2.8) with r = ri

when i is even; or
(b) f satisfies (2.7) with r = ri when i is even, and satisfies (2.8) with r = ri

when i is odd.

Then BVP (1.1), (1.2) has at least N − 1 positive solutions ui with ri < ‖ui‖ <
ri+1, i = 1, 2, . . . , N − 1.

Theorem 2.7. Let {ri}∞i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · and [k∗ri, ri],
i = 1, . . . , are mutually disjoint. Assume either

(a) f satisfies (2.5) with r∗ = ri when i is odd, and satisfies (2.6) with
r∗ = ri when i is even; or

(b) f satisfies (2.5) with r∗ = ri when i is even, and satisfies (2.6) with
r∗ = ri when i is odd.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

The following is an immediate consequence of Theorem 2.7.

Corollary 2.1. Let {ri}∞i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · and
[k∗ri, ri], i = 1, . . . , are mutually disjoint. Let E1 = ∪∞

i=1[k
∗r2i−1, r2i−1] and

E2 = ∪∞
i=1[k

∗r2i, r2i]. Assume

lim sup
E1∋x→∞

f(x)

x
< U−1 and lim inf

E2∋x→∞

f(x)

x
> (k∗L)−1.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

Our last theorem is about the nonexistence of positive solutions of BVP (1.1),
(1.2).

Theorem 2.8. BVP (1.1), (1.2) has no positive solutions if f(x)/x < U−1 on
(0,∞).

3. Examples

Example 1. Let f(x) = xθ with θ ∈ (0, 1). By Remark 2.1, Assumptions (H1)
and (H2) are satisfied for any w ∈ C([0, 1],R+). It is easy to see that f0 = ∞
and f∞ = 0. By Theorem 2.2 (b), BVP (1.1), (1.2) has at least one positive
solution.

For easy computations, in Examples 2-4, we let α = 3/2 and

w(t) =











c, 0 ≤ t ≤ 1/4,

1/G(t, t), 1/4 < t < 3/4,

c, 3/4 ≤ t ≤ 1,
EJQTDE, 2012 No. 17, p. 6



where G(t, s) is given in (1.3) and c > 0 is a constant. By some computations,
we know that γ =

√
3 − 2

√
6/3 and M =

√
3c/(4Γ(3/2)).

Example 2. Let f(x) = xθ with θ > 1. By a simple calculation we see that
Assumptions (H1) and (H2) are satisfied when

c ≤ (4 − 8
√

2/3)Γ(3/2)((θ− 1)1/θ + (θ − 1)
1−θ

θ )−θ.

In this case, since f 0 = 0 and f∞ = ∞, by Theorem 2.2 (a), BVP (1.1), (1.2)
has at least one positive solution.

Example 3. Let f(x) = λ(xθ1 +xθ2), where 0 < θ1 < 1 < θ2 <∞. By a simple
calculation we see that Assumptions (H1) and (H2) are satisfied when

c ≤ (4 − 8
√

2/3)Γ(3/2)((θ2 − 1)1/θ2 + (θ2 − 1)
1−θ2

θ2 )−θ2.

Furthermore, L =
√

3/2−
√

6/3 and U = 1/2+
√

3c/(8Γ(3/2)kθ2). In this case,
we let r1 = ((1 − θ1)/(θ2 − 1))1/(θ2−θ1). We claim that BVP (1.1), (1.2) has

(a) at least one positive solution if λ =
(

rθ1

1 + rθ2

1

)−1
U−1;

(b) at least two positive solutions if λ ∈ (0,
(

rθ1

1 + rθ2

1

)−1
U−1).

We note that f0 = f∞ = ∞, f is strictly increasing, and r1 is the minimum

point of f(x)/x on (0,∞). When λ =
(

rθ1

1 + rθ2

1

)−1
U−1, f(x) ≤ U−1r1 on

[k∗r1, r1]. By Theorem 2.3 (a), BVP (1.1), (1.2) has a positive solution u1 with
‖u1‖ ≤ r1. Similarly, by Theorem 2.3 (b), BVP (1.1), (1.2) has a positive
solution u2 with ‖u2‖ ≥ r1. However, u1 and u2 may be the same when ‖u1‖ =
‖u2‖ = r1.

Part (b) follows similarly from Theorem 2.5 (a).

Example 4. Let L and U be defined by (2.3) and (2.4), and

f(x) =

{

(2 + γ)x(sin(m ln x) + µ)/(2γL), x > 0,

0, x = 0,

where

1 < µ < min{4/(2 + γ), 1 + 2γL/((2 + γ)U)}
and

0 < m < (π − 2 sin−1 δ)/ ln(2/γ)

with

δ = max{|δ1|, |δ2|},
here δ1 = (4−2µ−µγ)/(2+γ) and δ2 = 2γL/((2+γ)U)−µ. Note that δ2 < 0.
By a simple calculation we see that Assumptions (H1) and (H2) are satisfied for
k∗ = γ/2 when c < γ16α−1(µ − 1)Γ(α)31−α/(2(µ + 1)). In this case, we claim
that BVP (1.1), (1.2) has an infinite number of positive solutions.
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In fact, it is easy to verify that δ ∈ (0, 1). For i ∈ N, let

ξi = exp(m−1(sin−1 δ + (i− 1)π)),

ηi = exp(m−1(iπ − sin−1 δ)).

Then
ηi

ξi
= exp(m−1(π − 2 sin−1 δ)) > exp(ln(2/γ)) = k∗−1.

Hence ξi < k∗ηi. Then for any x ∈ [k∗ηi, ηi], x ∈ [ξi, ηi].
When i is odd, for any x ∈ [k∗ηi, ηi]

sin(m lnx) ≥ sin(m ln ξi) = sin(sin−1 δ) = δ > δ1.

So
f(x) ≥ (2 + γ)k∗ηi(δ1 + µ)/(2γL) = L−1ηi.

When i is even, for any x ∈ [k∗ηi, ηi]

sin(m ln x) ≤ sin(m ln ηi) = sin(− sin−1 δ) = −δ ≤ δ2.

So
f(x) ≤ (2 + γ)ηi(δ2 + µ)/(2γL) = U−1ηi.

Therefore, by Theorem 2.7 (b), BVP (1.1), (1.2) has an infinite number of
positive solutions.

4. Proofs

Let X be a Banach space and K ⊂ X a cone in X. For r > 0, define

Kr = {u ∈ K| ‖u‖ < r} and ∂Kr = {u ∈ K| ‖u‖ = r}.
For an operator T : Kr → K, let i(T,Kr, K) be the fixed point index of T on
Kr with respect to K. We will use the following well-known lemmas on fixed
point index to prove our main results. For the detail, see [4, 9] and [24, page
529, A2, A3].

Lemma 4.1. Assume that for r > 0, T : Kr → K is a completely continuous
operator such that Tu 6= u for u ∈ ∂Kr.

(a) If ‖Tu‖ ≥ ‖u‖ for u ∈ ∂Kr, then i(T,Kr, K) = 0.

(b) If ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kr, then i(T,Kr, K) = 1.

Lemma 4.2. Let 0 < r1 < r2 satisfy

i(T,Kr1
, K) = 0 and i(T,Kr2

, K) = 1;

or
i(T,Kr1

, K) = 1 and i(T,Kr2
, K) = 0.

Then T has a fixed point in Kr2
\Kr1

.
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We will also use the following property of the Green’s function G(t, s) for
BVP (1.1), (1.2), see [3, Lemma 2.4] for the proof.

Lemma 4.3. Let G(t, s) be defined by (1.3) and γ defined in (H2). Then

(a) G(t, s) > 0 on (0, 1) × (0, 1),
(b) max

t∈[0,1]
G(t, s) = G(s, s) for 0 < s < 1 and min

1/4≤t≤3/4
G(t, s) ≥ γ G(s, s) for

1/4 ≤ s ≤ 3/4.

Let X = C[0, 1] and ‖u‖ = maxt∈[0,1] |u(t)| for any u ∈ X. Then (X, ‖ · ‖) is
a Banach space. Define

K = {u ∈ X | u(t) ≥ 0 on [0,1] and min
t∈[1/4,3/4]

u(t) ≥ k∗‖u‖}, (4.1)

where k∗ is defined in (H2), and T : K → X as

(Tu)(t) =

∫ 1

0

G(t, s)w(s)f(u(s))ds. (4.2)

Clearly, u(t) is a solution of BVP (1.1), (1.2) if and only if u ∈ K is a fixed

point of T , and ‖Tu‖ ≤
∫ 1

0
G(s, s)w(s)f(u(s))ds.

Lemma 4.4. Assume (H1), (H2) hold. Then TK ⊂ K and T is a completely
continuous operator.

Proof. For any u ∈ K with ‖u‖ = r, k∗r ≤ u(t) ≤ r on [1/4, 3/4]. By (4.2) and
Lemma 4.3, for t ∈ [1/4, 3/4]

(Tu)(t) =

∫ 1

0

G(t, s)w(s)f(u(s))ds

≥ γ

∫ 3/4

1/4

G(s, s)w(s)f(u(s))ds. (4.3)

By (H1), maxu∈[0,r] f(u) ≤ B(k∗) minu∈[k∗r,r] f(u). Then by (H2)

∫ 1/4

0

G(s, s)w(s)f(u(s))ds ≤ max
u∈[0,r]

f(u)

∫ 1/4

0

G(s, s)w(s)ds

≤ B(k∗) min
u∈[k∗r,r]

f(u)

∫ 1/4

0

G(s, s)w(s)ds

≤ B(k∗)M1 min
u∈[k∗r,r]

f(u)

∫ 1/2

1/4

G(s, s)w(s)ds

≤ B(k∗)M

∫ 1/2

1/4

G(s, s)w(s)f(u(s))ds. (4.4)
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Similarly,

∫ 1

3/4

G(s, s)w(s)f(u(s))ds ≤ B(k∗)M

∫ 3/4

1/2

G(s, s)w(s)f(u(s))ds. (4.5)

Therefore, by (4.4) and (4.5)

∫ 1

0

G(s, s)w(s)f(u(s))ds

=

(

∫ 1/4

0

+

∫ 1/2

1/4

+

∫ 3/4

1/2

+

∫ 1

3/4

)

G(s, s)w(s)f(u(s))ds

≤ (1 +B(k∗)M)

∫ 3/4

1/4

G(s, s)w(s)f(u(s))ds, (4.6)

which follows that

∫ 3/4

1/4

G(s, s)w(s)f(u(s))ds ≥ 1

1 +B(k∗)M

∫ 1

0

G(s, s)w(s)f(u(s))ds.

Hence by (H2) and (4.3)

(Tu)(t) ≥
γ

1 +B(k∗)M

∫ 1

0

G(s, s)w(s)f(u(s))ds

≥
γ

1 +B(k∗)M
‖Tu‖ ≥ k∗‖Tu‖ on [1/4, 3/4].

It is clear that (Tu)(t) ≥ 0 on [0, 1]. Therefore, TK ⊂ K. By Arzela-Ascoli
Theorem, T is completely continuous. �

Proof of Theorem 2.1. Without loss of the generality, we assume r∗ < r∗. For
any u ∈ ∂Kr∗ , ‖u‖ = r∗ and k∗r∗ ≤ u(t) ≤ r∗ on [1/4, 3/4]. By (2.4), (2.5),
(4.2), (4.6), and Lemma 4.3 (a)

‖Tu‖ = max
t∈[0,1]

∫ 1

0

G(t, s)w(s)f(u(s))ds

≤
∫ 1

0

G(s, s)w(s)f(u(s))ds

≤ U−1r∗ (1 +B(k∗)M)

∫ 3/4

1/4

G(s, s)w(s)ds = r∗.

By Lemma 4.1 (a), i(T,Kr∗ , K) = 1.
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For any u ∈ ∂Kr∗ , ‖u‖ = r∗ and k∗r∗ ≤ u(t) ≤ r∗ on [1/4, 3/4]. By (2.3),
(2.6), (4.2), and Lemma 4.3 (b)

‖Tu‖ ≥ (Tu)(1/2) =

∫ 1

0

G(1/2, s)w(s)f(u(s))ds

≥ γ

∫ 3/4

1/4

G(s, s)w(s)f(u(s))ds

≥ L−1r∗γ

∫ 3/4

1/4

G(s, s)w(s)ds = r∗.

By Lemma 4.1 (b), i(T,Kr∗, K) = 0.
By Lemma 4.2, T has a fixed point u in K with r∗ ≤ ‖u‖ ≤ r∗. Hence BVP

(1.1), (1.2) has at least one positive solution u(t). �

Proof of Theorem 2.2. (a) If f 0 < U−1, there exists a sufficiently small r∗ > 0
such that

f(x) < U−1x ≤ U−1r∗ on [k∗r∗, r∗],

i.e., (2.5) holds.
If f∞ > (k∗L)−1, there exists r̂ > r∗ such that

f(x) > (k∗L)−1x on [r̂,∞).

Then for any r∗ with k∗r∗ ≥ r̂

f(x) > (k∗L)−1x ≥ L−1r∗ for all x ∈ [k∗r∗, r∗],

i.e., (2.6) holds. Then the conclusion follows from Theorem 2.1.
(b) The proof is similar to Part (a) and hence is omitted. �

The proofs of Theorems 2.3 and 2.4 are in the same way and hence are
omitted.

Proof of Theorem 2.5. (a) If there exists r > 0 such that (2.7) holds, then by
the continuity of f(x)/x on (0,∞), there exist r1, r2 > 0 such that r1 < r < r2
and f(x) < U−1ri on [k∗ri, ri], i = 1, 2. By Theorem 2.3 (a) and (b), BVP (1.1),
(1.2) has two positive solutions u1 and u2 satisfying ‖u1‖ ≤ r1 and ‖u2‖ ≥ r2.

Similarly, Case (b) follows from Theorem 2.4. �

The proofs of Theorems 2.6 and 2.7 are in the same way and are hence
omitted.

Proof of Corollary 2.1. From the assumption we see that for sufficiently large i

f(x)

x
< U−1 on [k∗r2i−1, r2i−1]
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and
f(x)

x
> (k∗L)−1 on [k∗r2i, r2i].

This shows that for sufficiently large i

f(x) < U−1x ≤ U−1r2i−1 on [k∗r2i−1, r2i−1]

and

f(x) > (k∗L)−1x ≥ L−1r2i on [k∗r2i, r2i].

Therefore, the conclusion follows from Theorem 2.7. �

Proof of Theorem 2.8. Assume BVP (1.1), (1.2) has a positive solution u with
‖u‖ = r for some r > 0. Then u is a fixed point of the operator T defined by
(4.2). For any t ∈ [0, 1], by (4.6)

u(t) = (Tu)(t) =

∫ 1

0

G(t, s)w(s)f(u(s))ds

≤ (1 +B(k∗)M)

∫ 3/4

1/4

G(s, s)w(s)f(u(s))ds

< U−1r (1 +B(k∗)M)

∫ 3/4

1/4

G(s, s)w(s)ds = r,

which contradicts ‖u‖ = r. Therefore, BVP (1.1), (1.2) has no positive solu-
tions. �
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